hp-Optimal discontinuous Galerkin methods for linear elliptic problems

نویسندگان

  • Benjamin Stamm
  • Thomas P. Wihler
چکیده

The aim of this paper is to present and analyze a class of hpversion discontinuous Galerkin (DG) discretizations for the numerical approximation of linear elliptic problems. This class includes a number of well-known DG formulations. We will show that the methods are stable provided that the stability parameters are suitably chosen. Furthermore, on (possibly irregular) quadrilateral meshes, we shall prove that the schemes converge all optimally in the energy norm with respect to both the local element sizes and polynomial degrees provided that homogeneous boundary conditions are considered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Part I. Improved Energy Estimates for Interior Penalty, Constrained and Discontinuous Galerkin Methods for Elliptic Problems

Three Galerkin methods using discontinuous approximation spaces are introduced to solve elliptic problems. The underlying bilinear form for all three methods is the same and is nonsymmetric. In one case, a penalty is added to the form and in another, a constraint on jumps on each face of the triangulation. All three methods are locally conservative and the third one is not restricted. Optimal a...

متن کامل

hp-DGFEM for Second Order Elliptic Problems in Polyhedra II: Exponential Convergence

The goal of this paper is to establish exponential convergence of hp-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the conver...

متن کامل

Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities

We study discontinuous Galerkin methods for solving elliptic variational inequalities, of both the first and second kinds. Analysis of numerous discontinuous Galerkin schemes for elliptic boundary value problems is extended to the variational inequalities. We establish a priori error estimates for the discontinuous Galerkin methods, which reach optimal order for linear elements. Results from so...

متن کامل

An hp-local discontinuous Galerkin method for some quasilinear elliptic boundary value problems of nonmonotone type

In this paper, an hp-local discontinuous Galerkin method is applied to a class of quasilinear elliptic boundary value problems which are of nonmonotone type. On hp-quasiuniform meshes, using the Brouwer fixed point theorem, it is shown that the discrete problem has a solution, and then using Lipschitz continuity of the discrete solution map, uniqueness is also proved. A priori error estimates i...

متن کامل

A RESIDUAL–BASED POSTERIORI ERROR ESTIMATES FOR hp FINITE ELEMENT SOLUTIONS OF GENERAL BILINEAR OPTIMAL CONTROL PROBLEMS

In this paper, we investigate a residual-based posteriori error estimates for the hp finite element approximation of general optimal control problems governed by bilinear elliptic equations. By using the hp discontinuous Galerkin finite element approximation for the control and the hp finite element approximation for both the state and the co-state, we derive a posteriori upper error bounds for...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Math. Comput.

دوره 79  شماره 

صفحات  -

تاریخ انتشار 2010